A theory of calcium dynamics in generating force and low-frequency fatigue in paralyzed human soleus

نویسندگان

  • Matthew James Conaway
  • Edwin L. Dove
  • Richard K. Shields
  • MATTHEW JAMES CONAWAY
چکیده

Paralyzed muscle fatigues more quickly than intact muscle. The reason for this difference is currently unknown. This work will bridge this gap in knowledge by evaluating the predictive abilities of higher-resolution closed-form mathematical models of muscle force and fatigue. Knowledge garnered from this effort will suggest possible mechanisms for the differences in fatiguability of muscle in different states of health. The hypothesis to be tested is that the concept missing from present models, and thus the present understanding of the physiology, is the dynamic behavior of divalent calcium (Ca) during induced muscle contraction. If the behavior of Ca can be understood as a Riccati-Bass diffusion process, muscle force and low-frequency fatigue in paralyzed muscle can be more accurately predicted over the time course of response to neuromuscular electrical stimulation. The abilities of existing mathematical models to predict force and low-frequency fatigue are compared to the predictive abilities of new models that include the Riccati-Bass equation. There are several major findings of this study. First, it was found that the structure of the Conaway models better predicts force and low-frequency fatigue than do the Ding models. Second, the cross-bridge friction is the dominant process in generating force in fresh muscle at frequencies greater than 5 pps. Finally, the calcium leak current is dominant in low-frequency fatigue in paralyzed muscle. It is concluded that the process of muscle fatigue occurs as

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training.

Understanding the torque output behavior of paralyzed muscle has important implications for the use of functional neuromuscular electrical stimulation systems. Postfatigue potentiation is an augmentation of peak muscle torque during repetitive activation after a fatigue protocol. The purposes of this study were 1) to quantify postfatigue potentiation in the acutely and chronically paralyzed sol...

متن کامل

Low force contractions induce fatigue consistent with muscle mRNA expression in people with spinal cord injury

Spinal cord injury (SCI) is associated with muscle atrophy, transformation of muscle fibers to a fast fatigable phenotype, metabolic inflexibility (diabetes), and neurogenic osteoporosis. Electrical stimulation of paralyzed muscle may mitigate muscle metabolic abnormalities after SCI, but there is a risk for a fracture to the osteoporotic skeletal system. The goal of this study was to determine...

متن کامل

Fatigue of paralyzed and control thenar muscles induced by variable or constant frequency stimulation.

Muscles paralyzed by chronic (>1 yr) spinal cord injury fatigue readily. Our aim was to evaluate whether the fatigability of paralyzed thenar muscles (n = 10) could be reduced by the repeated delivery of variable versus constant frequency pulse trains. Fatigue was induced in four ways. Intermittent supramaximal median nerve stimulation (300-ms-duration trains) was delivered at 1) constant high ...

متن کامل

Optimizing control motion of a human arm With PSO-PID controller

Functional electrical stimulation (FES) is the most commonly used system for restoring function after spinal cord injury (SCI). In this study, we used a model consists of a joint, two links with one degree of freedom, and two muscles as flexor and extensor of the joint, which simulated in MATLAB using SimMechanics and Simulink Toolboxes. The muscle model is based on Zajac musculotendon actuator...

متن کامل

O-11: Dynamics of Flagellar Force Generated by A Hyperactivated Spermatozoon

Background: To clarify the mechanism of sperm penetration through the zona pellucida, the flagellar force generated by a hyperactivated spermatozoon was evaluated using the resistive force theory applied to the hyperactivated flagellar waves that were obtained from the mammalian spermatozoa. Materials and Methods: The hydrodynamic calculation of the flagellar force of the activated (non-hyperac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016